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Thank you, Moshe!!
This talk is in honor of Moshe’s fundamental contributions in  
diverse fields especially: 
- Database theory (in particular, over graph databases) 
- Finite Model Theory 
- Automata and Logic 
- Boolean satisfiability

The presented result was a modest attempt to learn from Moshe’s  
diversity; it aimed to connect graph databases and SMT



Graph DB: Classic Setting
Output actors that have a finite Bacon number in a movie DB

:acts_in

Regular Path Query (RPQ): 
x ⟶L Bacon, where L = (:acts_in + :acts_in−1)*

Desirable data complexity (query  fixed):  
NLogspace

L



„Data“ Querying
Output actors that have a finite Bacon number in a movie DB, 
whose age is at least 30 years apart from Bacon

:acts_in

:born_in

Data Queries can get complicated: 
1. String data type: similar names along path (small edit distance) 
2. Non-linear arithmetics: „nearby“ cities along path (Euclidean distance)
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Regular Data Path Queries 
(RDPQ)

(Libkin, Martens, Vrgoc [early 2010s])
Key idea: data words, register automata (Kaminski&Francez)

Theorem: RDPQ with register automata has NL data complexity.

Gets actors of equal age

Bacon , where 
 

⟶L Person

L = x ↓ (:acts_in + : acts_in−1)*x=

over  {acts_in, acts_in−1}
∪ ℤ

No domain-specific reasoning (e.g. no arithmetics)

(1913)(acts_in)(acts_in )(1963)−1

:born_in

:acts_in



Our Main Result
NLogspace data complexity for RDPQ with: 
1. Domain-Specific Reasoning (over integer linear arithmetic, 
    theory real closed fields, and various string theories) 
2. Generic data graph model 

Key ideas: 
1. Embedded Finite Model Theory 
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Key Idea #2: „Theory-
Aware“ Register Automata

Problem: undecidable emptiness already for 𝒮 = ⟨ℕ; + 1, = ⟩

Our solution: 
(1) Distinguish between active-domain and general-valued registers 
(2) General-valued registers are bounded-rewrite 
(3) First-order guards 
For important theories  (over integers, reals, and strings), we 
show that -RDPQ querying still has NL data complexity!

T
T

First approach:  
(1) fix an infinite structure  with a decidable theory 
(2) Registers take values and permit operations from 

𝒮
𝒮



Ex: Path of Coauthors whose 
„center“ is of distance <= 6
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Ex: Path of Coauthors whose 
„center“ is of distance <= 6

Two unrestricted registers: r1, r2

coauthors(curr, next) ∧

∃x, y ∈ adom (xval(curr, x) ∧ yval(curr, y) ∧ (x − r1)2 + (y − r2)2 ≤ 6)
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Theorem (formally)
Theorem:  
- RDPQ with -RA is NL-complete 
- RDPQ with -RA is NL-complete 
- RDPQ with RA over existential positive string equation is NL-

complete  
- RDPQ with RA over existential automatic structures is 

NP-hard, but is NL-complete under log-size hypothesis.

⟨ℤ; + , < ,1,0⟩
⟨ℝ; + , × , < ,1,0⟩
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To remove , we can rewrite this to an expression in terms of roots of
 treated as univariate -polynomial, for 

some active-domain values 

r2
(x − r1)2 + (y − r2)2 ≤ 36 r2

x, y



Future Work

• Query containment for RDPQ and extensions 

• NL data complexity for a more expressive query language, 
e.g., Regular Data Queries (RDQ)?



Thanks!


