
Data Path Queries over
Embedded Graph

Databases
Anthony W. Lin (TU Kaiserslautern & MPI-SWS, Germany) 

Joint with Diego Figueira (Univ. Bordeaux, CNRS, Bordeaux INP, France)

 Artur Jeż (Univ. of Wroclaw, Poland)

VardiFest’22, Haifa, Israel

Thank you, Moshe!!
This talk is in honor of Moshe’s fundamental contributions in
diverse fields especially:
- Database theory (in particular, over graph databases)
- Finite Model Theory
- Automata and Logic
- Boolean satisfiability

The presented result was a modest attempt to learn from Moshe’s
diversity; it aimed to connect graph databases and SMT

Graph DB: Classic Setting
Output actors that have a finite Bacon number in a movie DB

:acts_in

Regular Path Query (RPQ):
x ⟶L Bacon, where L = (:acts_in + :acts_in−1)*

Desirable data complexity (query fixed):
NLogspace

L

„Data“ Querying
Output actors that have a finite Bacon number in a movie DB,
whose age is at least 30 years apart from Bacon

:acts_in

:born_in

Data Queries can get complicated:
1. String data type: similar names along path (small edit distance)
2. Non-linear arithmetics: „nearby“ cities along path (Euclidean distance)

Regular Data Path Queries
(RDPQ)

(Libkin, Martens, Vrgoc [early 2010s])
Key idea: data words, register automata (Kaminski&Francez)

Regular Data Path Queries
(RDPQ)

(Libkin, Martens, Vrgoc [early 2010s])
Key idea: data words, register automata (Kaminski&Francez)

over {acts_in, acts_in−1}
∪ ℤ

Regular Data Path Queries
(RDPQ)

(Libkin, Martens, Vrgoc [early 2010s])
Key idea: data words, register automata (Kaminski&Francez)

over {acts_in, acts_in−1}
∪ ℤ

(1913)(acts_in)(acts_in)(1963)−1

:born_in

:acts_in

Regular Data Path Queries
(RDPQ)

(Libkin, Martens, Vrgoc [early 2010s])
Key idea: data words, register automata (Kaminski&Francez)

Gets actors of equal age

Bacon , where

⟶L Person

L = x ↓ (:acts_in + : acts_in−1)*x=

over {acts_in, acts_in−1}
∪ ℤ

(1913)(acts_in)(acts_in)(1963)−1

:born_in

:acts_in

Regular Data Path Queries
(RDPQ)

(Libkin, Martens, Vrgoc [early 2010s])
Key idea: data words, register automata (Kaminski&Francez)

Theorem: RDPQ with register automata has NL data complexity.

Gets actors of equal age

Bacon , where

⟶L Person

L = x ↓ (:acts_in + : acts_in−1)*x=

over {acts_in, acts_in−1}
∪ ℤ

(1913)(acts_in)(acts_in)(1963)−1

:born_in

:acts_in

Regular Data Path Queries
(RDPQ)

(Libkin, Martens, Vrgoc [early 2010s])
Key idea: data words, register automata (Kaminski&Francez)

Theorem: RDPQ with register automata has NL data complexity.

Gets actors of equal age

Bacon , where

⟶L Person

L = x ↓ (:acts_in + : acts_in−1)*x=

over {acts_in, acts_in−1}
∪ ℤ

No domain-specific reasoning (e.g. no arithmetics)

(1913)(acts_in)(acts_in)(1963)−1

:born_in

:acts_in

Our Main Result
NLogspace data complexity for RDPQ with:
1. Domain-Specific Reasoning (over integer linear arithmetic,
 theory real closed fields, and various string theories)
2. Generic data graph model

Key ideas:
1. Embedded Finite Model Theory

2. Theory-Aware Register Automata

Our Main Result
NLogspace data complexity for RDPQ with:
1. Domain-Specific Reasoning (over integer linear arithmetic,
 theory real closed fields, and various string theories)
2. Generic data graph model

Key ideas:
1. Embedded Finite Model Theory

2. Theory-Aware Register Automata

Key Idea #2: „Theory-
Aware“ Register Automata

Problem: undecidable emptiness already for 𝒮 = ⟨ℕ; + 1, = ⟩

Our solution:
(1) Distinguish between active-domain and general-valued registers
(2) General-valued registers are bounded-rewrite
(3) First-order guards
For important theories (over integers, reals, and strings), we
show that -RDPQ querying still has NL data complexity!

T
T

First approach:
(1) fix an infinite structure with a decidable theory
(2) Registers take values and permit operations from

𝒮
𝒮

Ex: Path of Coauthors whose
„center“ is of distance <= 6

(0,0)
Moshe Leonid

Pablo
Marcelo

(7,0)

(10,7)

(1,24)

Ex: Path of Coauthors whose
„center“ is of distance <= 6

(4,3)

(0,0)
Moshe Leonid

Pablo
Marcelo

(7,0)

(10,7)

(1,24)

Ex: Path of Coauthors whose
„center“ is of distance <= 6

Two unrestricted registers: r1, r2

coauthors(curr, next) ∧

∃x, y ∈ adom (xval(curr, x) ∧ yval(curr, y) ∧ (x − r1)2 + (y − r2)2 ≤ 6)

(4,3)

(0,0)
Moshe Leonid

Pablo
Marcelo

(7,0)

(10,7)

(1,24)

Theorem (formally)
Theorem:
- RDPQ with -RA is NL-complete
- RDPQ with -RA is NL-complete
- RDPQ with RA over existential positive string equation is NL-

complete
- RDPQ with RA over existential automatic structures is

NP-hard, but is NL-complete under log-size hypothesis.

⟨ℤ; + , < ,1,0⟩
⟨ℝ; + , × , < ,1,0⟩

Key Technique
Restricted Register Collapse: linear arithmetic, real closed fields

Each unrestricted register could be effectively replaced by
active-domain registers
Extends the classic notion of Restricted Quantifier Collapse
from EFMT

Key Technique
Restricted Register Collapse: linear arithmetic, real closed fields

Each unrestricted register could be effectively replaced by
active-domain registers

Two unrestricted registers: r1, r2

coauthors(curr, next) ∧

∃x, y ∈ adom (xval(curr, x) ∧ yval(curr, y) ∧ (x − r1)2 + (y − r2)2 ≤ 6)

Example:

Extends the classic notion of Restricted Quantifier Collapse
from EFMT

Key Technique
Restricted Register Collapse: linear arithmetic, real closed fields

Each unrestricted register could be effectively replaced by
active-domain registers

Two unrestricted registers: r1, r2

coauthors(curr, next) ∧

∃x, y ∈ adom (xval(curr, x) ∧ yval(curr, y) ∧ (x − r1)2 + (y − r2)2 ≤ 6)

Example:

Extends the classic notion of Restricted Quantifier Collapse
from EFMT

To remove , we can rewrite this to an expression in terms of roots of
 treated as univariate -polynomial, for

some active-domain values

r2
(x − r1)2 + (y − r2)2 ≤ 36 r2

x, y

Future Work

• Query containment for RDPQ and extensions

• NL data complexity for a more expressive query language,
e.g., Regular Data Queries (RDQ)?

Thanks!

